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Intrinsic characterisation of orthogonal R separation for 
Laplace equations 
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t Mathematics Department, University of Waikato, Hamilton, New Zealand 
$ School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA 

Received 28 April 1982 

Abstract. This paper gives a coordinate-free characterisation of R separation for the 
Laplace equation on a pseudo-Riemannian manifold in terms of commuting conformal 
symmetry operators. The coordinates can be computed from a knowledge of the operators. 

1. Introduction 

Let V,, be an n-dimensional pseudo-Riemannian manifold and let {y’} be a local 
coordinate system for V,,. The Laplace (or wave) equation is 

A44y 1 = 0 (1.1) 

where (I/ is a function on V,, and A is the Laplace-Beltrami operator (Eisenhart 1949) 

Here, ai = ay / ,  the metric on V,,, expressed in terms of the coordinates {y’}, is 

ds = 1 gij dyi dy’ g = det(gij) 

and Xk gikgkj = 8;. Associated with the Laplace equation is the Hamilton-Jacobi 
equation (Kalnins and Miller 1982a) 

i,i 

n 
%(a, W )  = 1 g”ai wa, w = 0 

%(pi) = f gi’pipj 

i J= l  

where W is a function on V,, and % is the Hamiltonian function 

i,j=l 

(1.3) 

(1.4) 

defined on the cotangent bundle v,,. Both A and X are coordinate-independent 
objects. 

As is well known (Moon and Spencer 1952, Kalnins and Miller 1978) there is a 
close relationship between additively separable solutions of (1.3) and multiplicative 

5 Supported in part by NSF Grant MCS 78-26216. 
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R-separable solutions of the Laplace equation: 

(Here A z ,  . . . , A,, are separation constants. If R = 1 we have ordinary separation and 
if a, In R = 0 for i # j we have trivial R separation.) In particular, every R-separable 
coordinate system for (1.1) can be shown to be also separable for (1.3). 

In Kalnins and Miller (1982a) the authors characterised additive separation for 
the Hamilton-Jacobi equation (1.3) in terms of involutive families of conformal Killing 
tensors for ?,,. Here we shall find the analogous characterisation of R separation for 
the Laplace equation (1.1) in terms of families of commuting conformal symmetry 
operators. Briefly, we shall show that a separable system {y'} for (1.3) is R separable 
for (1.1) if and only if the system of defining conformal Killing tensors associated with 
{ y ' }  can be extended to a family of commuting conformal symmetry operators. Thus 
in essence we are dealing with a problem in quantisation theory. 

In Kalnins and Miller (1980,1982b) we solved the corresponding problems for 
the Hamilton-Jacobi equation %' = E and the Helmholtz (or Schrodinger) equation 
A$ =E$, reaching similar conclusions. However, the techniques of those papers do 
not extend to the present case in a straightforward manner. For the Helmholtz 
equation it turned out that there was a unique family of symmetry operators associated 
with an R-separable coordinate system {y'}. In the present case there may be several 
such families and this lack of uniqueness greatly complicates the theory. Fortunately 
our final result, theorem 3, has a satisfying degree of simplicity and elegance. 

In 0 2 we give a precise constructive definition of orthogonal R separation for the 
Laplace equation and work out the technical conditions for the success of the construc- 
tion. Then in 0 3 we determine the symmetry operator significance of these technical 
conditions. 

The results of this paper have obvious application to all fields in which explicit 
solutions of Laplace and wave equations on manifolds are relevant. For some of the 
details of the applications, see Miller (1977). 

All our considerations are local rather than global although it is clear that our 
results can be extended to construct a global theory of variable separation. Any 
function occurring in this paper is assumed to be locally analytic. 

2. Orthogonal R separation 

Let { x  '} be an orthogonal coordinate system on the (local) pseudo-Riemannian mani- 
fold V,,. In these coordinates the metric is 

n 

ds"= Hi2 (dx')2 
i = l  

and the Laplace equation becomes 
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where h’ = Hi . . . HL. We briefly review the construction to obtain R-separable 
solutions 

for (2.2) and find necessary and sufficient conditions for the success of the construction. 
Let (Sji(x’)) be a Stackel matrix, i.e. an n x n non-singular matrix whose jth row 
depends only on the variable xi, and set S = det(Sii). Let A 2 , .  . , An be complex 
parameters and define differential operators Ki, L ,  j = 1, . . . , n by 

n 

Ki = Li + AiSji(x’) Li = a, + lidi + mi (2.4) 
j = 1  

where li, mi are functions of xi alone. We say that the orthogonal coordinates {xi} 
are R separable for the Laplace equation (2.2) provided there exist functions g i ( x )  
and R(x) ,  (R # 0), such that 

R-’AR = 2 gj (x)Ki .  
j =  1 

(2.5) 

(Here 

R-’AR = ~ ~ a i ( h ’ H ; - 2 a i ) + 2 ~  HI-2(ai 1nR)ai+R-’(AR) (2.6) 
h’ i 1 

is an operator.) If these coordinates are R separable then the function $, (2.3), is a 
solution of .A$ = 0 whenever the 4”’ satisfy the (ordinary differential) separation 
equations 

Ki$‘(j) = 0 j =  1 , .  . , , n. (2.7) 

Hj-2 = Q(x)S”/S (2.8) 

A simple consequence of (2.5) and (2.6) is the necessary condition for R separation 

where S” is the ( j ,  1) minor of (Sii) and Q is a non-zero function. Hence the metric 
ds” is in conformal Stackel form and the metric ds2 is in Stackel form, where 

(2.9) ds” = Q-l ds2 = Q-’ 1 Hi2 (dx’)’ HT2 = S ” / S ,  
I 

It follows directly from the work of Stackel himself (1891) that condition (2.8) is 
necessary and sufficient for the orthogonal coordinates to permit additive separation 
of the Hamilton-Jacobi equation 

(2.10) 

i.e. separation in the form W=Zy=l W(’’(xi) .  However, conformal Stackel form is 
not sufficient for product R separation of the Laplace equation. In addition we must 
require equality of the coefficients of ai and the zeroth-order terms on each side of (2.5): 

f; + 2ai In R = li(x’) (2.11) 

R-’(AR) = E  QHT2mi(xi). 
1 

(2.12) 
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Here 

f i  = ajf= aj ln(Q‘2-“”2h/S) h = H i . .  . H,,. (2.13) 

Solving for R from (2.11) and substituting this expression into (2.12) we reduce the 
separation conditions to 

(2.14) 

where Gi = -2mi + aili +$I? is a function of x i  alone. 
To express these conditions more simply we make use of some results from Kalnins 

and Miller (1978). Given a metric 2 H? (dx’)’ in Stackel form, we say that the function 
T ( x )  is a Stickel multiplier (for ds2) if the metric d i 2  = T ds2 is also in Stackel form 
with respect to the coordinates {x ’ } .  It can be shown that T is a Stackel multiplier if 
and only if there exist functions k j  = kj(x’)  such that 

n 
T ( x )  = 1 ki(x’)HT2. (2.15) 

j =  1 

Furthermore, necessary and sufficient conditions that T be a Stackel multiplier are 

ajlT - ajT& In H i 2  -alTaj In H;’ = 0 j # 1. (2.16) 

Recall that necessary and sufficient conditions that ds2 be in Stackel form are (Eisenhart 
1949, appendix 13) 

a, In H;’ + a i  In HT2 aj In HT2 - a i  In HT2 aj  In HT2 
-ai In H;’ ai In ~ 7 ‘  = o i # j .  (2.17) 

Theorem 1. Necessary and sufficient conditions that the orthogonal coordinates { x  ‘} 
be R separable for the Laplace equation 

h ’ = H ;  . . .  Hk 1 - t3j(h’H!-2 a,+) = 0 
h ’ j = ~  

are 

Q C Hi2 (dx’)2 = B Hi2 (dx’)2 is in Stackel form; 

determinant of the Stackel matrix. 
If these conditions are satisfied then 

(i) there exists a non-zero function Q such that the metric d s2=  

(ii) BH;’ (hj+$f;) is a Stackel multiplier where fj = a j  ln(Qh‘/S) and S is the 

(2.18) 

where the Li = Lj(x’) are arbitrary. 

We say that the orthogonal coordinates { x i }  are separable for the Laplace equation 
provided they are R separable with R = 1, and trivially R separable if R = IIY=’=, L i b ’ ) .  

Now suppose that the coordinates { x i }  R separate the Laplace equation. Then by 
expanding the Stackel determinant on the ith column and using (2.4) we obtain 
operators Ai, i = 1 , .  . , , n, such that Ai+ = -Ai+, ( A l  = 0) for an R-separated $: 

(2.19) 
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Here, 

A=QA,. (2.20) 

It is convenient to introduce the functions plk)(x) where 

Sik/S = plk)H7’ 1 s j ,  k s n. (2.21) 

Then p j l )  = 1 and as shown in Eisenhart (1949, appendix 13) or Koornwinder (1980) 

= @ I k )  -pjk))ai In ~7’. (2.22) 

Thus 

= p j i ) ~ ; 2  (a, +haj +t i )  l s i s n  
i 

where 

ti = mi +$aj(h - lj)+i(f,” - 1;). 

Using (2.22)-(2.24) and (2.14) one can directly verify that 

[Aj,Akl=O 1 < j ,  k s n  

(2.23) 

(2.24) 

(2.25) 

where [A, B] = AB -BA. Furthermore, 

[At, AI = CiA 2 s l s n  (2.26) 

where Ci = [At, Q] .  Thus the At, 1 3 2, form a commuting family of conformal symmetry 
operators for A with the property that their simultaneous eigenfunctions are the 
R-separable solutions of the Laplace equation corresponding to the coordinates {x ’ } .  

In Kalnins and Miller (1982a) we studied the corresponding problexq for the 
Hamilton-Jacobi equation (2.10). We review the results of Kalnins and Miller (1982a) 
that are germane to our present problem. There, use was made of the natural symplectic 
structure on the 2n-dimensional cotangent bundle e,, of y,,. Corresponding to local 
coordinates {xi} on V, there are coordinates { X I ,  p i }  on V,,. The Poisson bracket of 
functions F(x, p ) ,  Y(x, p )  on ?,, is the function 

(2.27) 

Let X = XjH;-*p,” be the Hamiltonian corresponding to (2.10). If {xi} is an orthogonal 
separable coordinate system for the Hamilton-Jacobi equation then there exists a 
Stackel matrix ($(XI)) such that HI-’ is given by (2.9). Also, the quadratic forms 

(2.28) 

(X = Q d J  satisfy {d,, d j }  = 0, and when evaluated for pi = ajW with W a separable 
solution of (2.10) they satisfy d k  = Ak, (A1 = 0) where A’, . . . , A,, are the separation 
parameters, Thus, the ( a ,  2 =s i s n} form an involutive family of conformal Killing 
tensors. 

Let a i’(y) be a symmetric contravariant 2-tensor on V,,, expressed in terms of local 
coordinates {yk}, and let g”(y) be the contravariant metric tensor. A root p ( y )  of ai’ 
is an analytic solution of the characteristic equation 

det(a”-pg”)=O (2.29) 
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and an eigenform w = X k  k k  dy corresponding to p is a non-zero one-form such that 

1 (a  i’ - pgi’)pi  = 0 l S i S n .  (2.30) 
i 

It follows from (2.21) that for a Hamilton-Jacobi separable system { x i }  the p i k ) ,  
1 s i s n are the roots of the quadratic forms d k  with respect to the metric ds2 and 
the dxi constitute a basis of simultaneous eigenforms. In Kalnins and Miller (1982a) 
the authors proved the following theorem. 

Theorem 2. Necessary and sufficient conditions for the existence of an orthogonal 
separable coordinate system { x ’ }  for the Hamilton-Jacobi equation (1.3) are that there 
exist n - 1 quadratic functions a k  = 

(1) each ak is a conformal Killing tensor; 
(2) {af, B,} = 0, 2 s i,  j s n ; 
(3) the set (%, 3,) is linearly independent (as n quadratic forms); 
(4) there is a basis { U ( , )  : 1 s j s n }  of simultaneous eigenforms for the {ak}. 

b?k,p,p, on e,,, 2 s k s n, such that 

If conditions (1)-(4) are satisfied then there exist functions f J ( x )  such that w ( ’ )  = f’ dx’, 
l s j s n .  

We note that the conformal Killing tensors B k  cannot necessarily be identified 

(2.31) 

Here { B 2 , B 3 }  = 0, a2, a3 are conformal Killing tensors and the simultaneous eigen- 
forms are dx’, dx2, dx3 (Cartesian coordinates). However, there exists no function Q 
such that {Q-’%, ai} = 0, j = 2,3.  

At this point it is tempting to try to mimic the proof of theorem 3 of Kalnins and 
Miller (1982b), a theorem which characterises R separation for the Helmholtz equation 
in terms of commuting symmetry operators for A. One would presumably show that 
a family of commuting conformal symmetry operators A,, 2 =s I s n, whose associated 
quadratic forms determine an additively separable coordinate system { x ’ }  for the 
Hamilton-Jacobi equation can, with the possible modification of some first derivative 
and zeroth-order terms, be identified with the operators (2.23), so that the coordinates 
{ x i }  also R separate the Laplace equation. This straightforward procedure will not 
work, however. The principal difficulty is this: in general, given a commuting family 
of conformal symmetry operators B,, 2 s I s n, whose associated quadratic forms 
determine a separable coordinate system { x i }  for the Hamilton-Jacobi equation, it is 
not possible to find a function Q such that Q-’A commutes with the B,. Also this 
difficulty cannot be remedied by modifying only the first- and zeroth-order terms of 
the B,. The basic cause of the problem is that f ( x ) A  is a conformal symmetry of A 
for any function f and this produces a degree of ambiguity in the choice of conformal 
symmetries. 

with the Killing tensors (2.28). Consider the Euclidean space example 
2 % = p :  + p :  + p :  W 2 = x 1 % + p P :  9 3 3  = €72. 

A modification of our previous example clarifies the issue: 

A = a l l  + a22 + a33 B2 = x ’ A +  a,, B~ = a22. (2.32) 

Here [B2, B3]  = 0 ,  [A, B2]  = 2&A and [A, B3] = 0 so that B2, B3 form a commuting 
family of conformal symmetries for A. Moreover, these operators determine a Hamil- 
ton-Jacobi and a Laplace separable coordinate system (Cartesian coordinates 
xl, x2, x 3 )  via the equations 

A $ = O  B2$ = A 2 $  B3$ = A 3 4 .  (2.33) 
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On the other hand it is not possible to find Q such that [Q-’A, Bj] = 0, j = 2 ,3 ,  so 
that the Bj cannot be identified with the operators (2.23). 

Another instructive example is provided by the Euclidean space Laplace operator 
again and the operators (in Cartesian coordinates) 

gZ = J: B3 = P: +K3 (2.34) 

where 
2 1 .T~ = x al  - X  a2 p3 =a3 K~ = [(x3)’- (x’)’ - ( x ~ ) ~ ] ~ ~ + ~ x ~ x  ‘al + ~ X ~ X % ~ + X ~ .  

(2.35) 

Here, B2 and B3 are commuting conformal symmetry operators and their associated 
quadratic forms determine a separable coordinate system (cylindrical coordinates). 
However, the operators A2 = J:, A3 = P: are those which would be associated with 
cylindrical coordinates by the construction (2.19). There appears to be no natural 
way of eliminating the operator K3 in advance. 

3. The basic result 

We can find no a priori grounds by which to determine the ‘natural’ operators { A k }  
defining an R-separable coordinate system from an arbitrary defining set {Bk} ,  although 
the {Ak} can be obtained aposteriori from the coordinates. Once this ambiguity is 
accepted, however, a satisfying analogy to theorem 2 emerges. 

Let { y ’ }  be a local coordinate system on V,, and let B be a second-order conformal 
symmetry operator, expressed in these coordinates by 

B = x b i ’ d i j + c i a i + d ,  
i,i 

Then B is uniquely associated with a conformal Killing tensor W on F,, and defined 
in local coordinates by 

W = b“pipi. 

We can talk about the roots and eigenforms of B, meaning by this the roots and 
eigenforms of W. 

Theorem 3. Necessary and sufficient conditions for the existence of an orthogonal 
R-separable coordinate system { x i }  for the Laplace equation (1.1) are that there exist 
n - 1 second-order differential operators Bz,  . . . , B, on V, such that 

(1) each Bk is a conformal symmetry operator; 
(2) [Bi,Bj]=O, 2 s i , j s n ;  
(3) the set (X, B2,. . . ,a,,) is linearly independent; 
(4) there is a basis {w(’ ,  : 1 S j s n }  of simultaneous eigenforms for the Bk. 

If conditions (1)-(4) are satisfied then there exist functions f i ( x )  such that 
fi(x) dx’, j = 1, . . . , n. 

= 

Proof. If { x i }  is an R-separable coordinate system for (1.1) then, as we showed in 0 2, 
there exists a family of operators {Bk} satisfying conditions (1)-(4) and such that {dx’} 
is a simultaneous eigenbasis for these operators. 
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Conversely, suppose {Bk} is a family of operators satisfying conditions (1) - (4) .  
Comparing coefficients of the third derivative terms in the commutators ( 1 )  and ( 2 )  
we see that the associated quadratic forms {a,} are conformal Killing tensors and that 
{Bk, 3,) = 0 , 2  s k,  1 s n. Thus, from conditions ( 3 )  and ( 4 ) ,  the hypotheses of theorem 
2 are satisfied. It follows that there exists an orthogonal local coordinate system {x’} 
such that dx’ is a simultaneous eigenform for each operator Bk, and a Stackel matrix 
( S j i ( x ’ ) )  which defines an additive separation of variables for the Hamilton-Jacobi 
equation (1 .3 ) .  Further, there exists a function Q such that in these coordinates 

Denoting the roots of Bk with respect to B1= Q-’A by p?),  j = 1 , .  . . , n we have 

Bk = 1 pjk)Hi2pf  l s k s n  ( 3 . 2 )  

a i (p: .m)  - p j m ) )  = - p i m ) ) a i  In H ; ~  l s m s n  (3 .3 )  

i 

where P I ’ )  = 1 .  It follows from the results of Kalnins and Miller (1982a) that 

and we can write 

Bk =Cplk)HT2(ai i+fjaj)+C &&+Fk 2 s k s n .  (3 .6 )  
i I 

To simplify the following computations we perform the similarity transformation 

B *i = efi2Be-f‘2. (3 .7 )  
(Note that [Bi, Bj]‘ = [Si ,  ij].) Then, 

Now we exploit the relations 

[Bl, B k ]  = (1 t:aj f ak) i 1  2 s k s n  ( 3 . 9 )  
1 

and 
[ i k ,  i l ]  = 0 2 s k,  1 G n. (3 .10 )  

Comparing coefficients of third-derivative terms in (3 .9 )  we obtain (3 .3 )  again, as 

t ;  = 2 ~ ; ~  a i p j k ) .  ( 3 .11 )  

well as the new relation 
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Comparing coefficients of d j j  in (3.9) we find 

2ai(5y) -E [;"a[ In H;' = a, -1 H;' a lp!")  2 s m s n .  
I I 

Comparison of the coefficients of a f  in (3.9) leads to 

-2dr/i, =dl(pj"'T)-H: CH;'aiiZ!,, 2 s m s n  
i 

where 

T = C  Hi' ( f k k  +if",* 
k 

Comparison of the coefficients a,, i # j in (3.9) yields 

a,(&) +H;' a/(&) = 0 i # 1, m 3 2 .  

Now define functions e!" by 

e!") = - ; H ;  1 H;* ai& 1 < 1 sn, 2 d m s n .  
i 

2707 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

We claim that aie!"' = ar&", i.e. that there exist functions a(m) such that 0;"' 
Indeed 

ail In H;' = alj In H;' (3.17) 

since HT' is in Stackel form (see (2.17)), and using (3.12), (3.15), (3.17) we can write 
(3.16) in the form 

-44") = a r  a, -C ( ~ ; ' a ~ ~ p j m ) + ( ~ a ~  1nHLZ)) 
i i  

(3.18) 

Denoting the left-hand side of (3.12) by $jm), we have ai$!m) =af$jm) ,  1 # j ,  and this 
identity, together with (3.17), yields 

a;;"'= @ ( m )  fi l # j  

oj;"'=2ajfl&-C (ajf&ai InH;' +ai&dfi 1nH;' ++$,,aji InH;'). (3.19) 

It followsdirectlyfrom (3.18), (3.19) that aiel"' =are:"'. Thus 0;"' = ala("). Substitut- 
ing this result in (3.13) we see that there must exist a function c'") such that 

dtc'") = &(p!")T). (3.20) 

i 

(3.21) 

where we have used condition (3), (3.3), and relations (2.17). Comparing this result 
with (2.16), we see that 

T = H;' ( f k k  +tf',) 
k 

is a StHckel multiplier. Hence, by theorem 1, the coordinates {xi} are R separable 
for the Laplace equation. 
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We have not used all of the information contained in the commutation relations 
for the {Bk} .  One can additionally show that the first-order terms Xi t:al are extraneous 
and can be deleted. Indeed, define operators Ck by 

g k  = 6;1, + .$& + a ( k )  1 S k S n  (3.22) 
I 

where a(’) = 0. Then, employing relations (3.3) and (3.4), we can directly verify that 
[ C k ,  e,] = 0 for 2 S k, m S n. Furthermore, comparison of the zeroth-order terms in 
(3.9) yields 

H;’(aiikm +tpjm)ai iT+aip!”’aiT)+tC &aiT+$a,T = O  2 s m  sn (3.23) 

and this is sufficient to show that the { c k }  are conformal symmetry operators. Thus 
the ‘reduced’ operators c k  can be used to define the R separation. This argument 
suffices to eliminate the operator K3 in example (2.34). 

The operators c k  can be used to characterise the separated solutions. Indeed, 
from lemma 1 of Kalnins and Miller (1982a) we can assume, without loss of generality, 
that H i 2  = 1. Then setting pi“’ = p j m )  -p!,”, 1 s m  ~ n ,  and substituting this 
expression in equations (3.3) we find 

I i 

dip;,) = (pi” -p;,))b, In ~ 7 ’  1 s i ,  j ,  m 4 n. (3.24) 

Note that equations (3.24) are identical with (2.22). Setting 

A,,,=C,,,-pL”C1 l S m S n  (3.25) 

where p‘,“ = 0 one can easily verify that the operators A ,  can be identified with (2.23). 
Here Am$ = C,$ for any solution $ of A$ = 0 since C1 = C I A .  Thus the separated 
solutions corresponding to the coordinates {x k }  can be characterised by 

c m $  = -Am$ A l = O .  (3.26) 

We can also use the proof of the previous theorem to generalise theorem 3 in 
Kalnins and Miller (1982b). 

Corollary. Necessary and sufficient conditions for the existence of an orthogonal 
R-separable coordinate system { x ’ }  for the Helmholtz equation A$ =E$, E Z 0, are 
that there exist n second-order differential operators B1 = A, BZ,  . . . , B, such that 

(1) [Bi, Bj] = 0, 1 4 i, j S n ; 
(2) the set {ai} is linearly independent; 
(3) there is a basis { w ( ~ , :  1 S j  s n} of simultaneous eigenforms for the Bk. 

If these conditions are satisfied then there exist functions f’(x) such that w ( ~ )  =f’ dx’, 
1 S j S n .  

Proof. This follows from the proof of theorem 3 with Q = 1, &pik)  = 0, t: = ak = 0. 

This generalises the principal result of Kalnins and Miller (1982b) in the sense 
that we do not have to require that the operators Bk are in self-adjoint form. However, 
we can no longer assert that the R-separated solutions of the Helmholtz equation are 
the simultaneous eigenfunctions of the operators Bk. An example is provided by the 
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Laplace operator (2.32) and 

B:! = J :  + J ;  + J: +P3 B3 = J: 
where J3 and P3 are given by (2.35) (spherical coordinates). 
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